Insights and knowledge with regards to 3D print warping.
Follow this 4 part blog series to learn about warping and its causes, and how to best reduce it.
In this 4 part series of blog posts we will be exploring :
Warping and its causes.
Factors that control the warp.
Effects of build plate temperature and how better settings result in less warping.
Improving the first layer adhesion further for perfect 3D prints.
Thermoplastic materials of different material compositions achieve optimum adhesion with different adhesion products.PLA, ABS and PET-Gadhere firmly to theOriginal Magigoo®adhesive when the build-plate is hot and are easy to remove once the build-plate cools down. In addition to the original Magigoo® adhesive which is suited for printing conventional FDM materials, theMagigoo® Pro rangeconsists offour additional adhesivesdesigned specifically for use withdifferent engineering grade materials.
The range includesMagigoo® PCforpolycarbonatefilaments,Magigoo® PAforNylonand reinforced Nylon filaments,Magigoo® PPforpolypropyleneand other poly-olefinic materials andMagigoo® PPGFwhich is specifically tailored forglass fibre reinforced polypropylenefilaments.
Magigoo®products (seen in Figure 1) are designed and tested to be used onheated build-plateswith glass surfaces and Garolite G11, yet Magigoo products also work on other build surfaces such as aluminium, PEI and Kapton tape.
Magigoo's aim is to help make your bed adhesion issues a thing of the past by suggesting the optimal settings for reliable bed adhesion each time. Unfortunately, every FDM printer and its environment is different so different materials will require different printer settings for optimal adhesion.
What causes warping?
The FDM printing process requires that a polymer is molten and extruded onto a build-plate or a previous layer of extruded material,layer by layer. Each layer will thus be cooling at different rates leading to atemperature differentialwhen the object is being printed. This manufacturing method will thus result in a part which iscooling non-uniformly, this leads to several issues includingwarpingandprint-failure due to insufficient adhesion.
Warpingis when the print starts tolift up from the cornersanddeforming in a lateral direction(Figure 2). In extreme cases warping will cause the print to completely detach from the printer but even in mild cases it can bedetrimental due to loss of dimensional accuracywhich can lead to the part being unusable depending on the application. The severity of warp will depend on a number of factors withsome materialsbeingmore prone to warp than others. It goes without saying that for a successful print this detrimental effect needs to be avoided as much as possible.
Differential thermal contraction
The cause of warping can be attributed to the differential thermal contraction of each successive printed layer:
1. When the first layer is extruded onto the build-plate, it starts immediately cooling down to the build plate temperature, this will lead to the first layer to contract slightly (Figure 3).
2. The second layer will be deposited on the already contracted first layer while also cooling down, thus contracting on top of the first layer. Since the bottom layer is already slightly contracted when the upper layer is deposited, the upper layer will cause the layer below it to compress (Figure 4).
3. This process will keep on repeating itself as new layers are added causing more lateral compression of the lower layers. This results in an overall sheer force between the printed layers which we can call warping stress. If the warping stress is larger than the stiffness of the part and the bed adhesion the bottom of the print will inevitably start pulling away from the build plate. (Figure 5).
Factors affecting warping
Warping is cause due to several factors including the material properties and the printing conditions which are not independent of each other. One of the most important material properties governing the amount of warp in a print is theCTE (coefficient of thermal expansion). The CTE describes the tendency of a material to change its shape, area and volume as the temperature changes. A material with a high numerical value for linear CTE exhibits large changes in length as a response to temperature change. As a result materials which have a high CTE are more prone to warping than materials which do not exhibit large changes in dimensions during the thermal changes present during FDM printing.
In addition to CTE, change in the crystallinity of the material during cooling need to be consider. Crystalline materials such as PP and PEEK will crystallise on cooling from the molten state. Crystallisation can lead to potentially higher shrinkage rates since crystalline structures tend to be more tightly packed. The crystallisation of a material depends on several factors and merits a discussion of its own, at this point it is sufficient to assume that crystalline materials such as PP, some nylons and PEEK tend to warp more than amorphous plastics.
Choosing a selection results in a full page refresh.
!
We need your address to create a draft order.
Please provide your address to create a draft order.
Draft order has been created successfully. You can open or copy this link for the invoice checkout.